
6WDQGDUG�+DVKUDWH�7RNHQ

6HFXULW\�$VVHVVPHQW

-DQXDU\�6WK������

)RU��

6WDQGDUG�+DVKUDWH�*URXS

%\���

*XLORQJ�/L�#�&HUWL.�

JXLORQJ�OL#FHUWLN�RUJ

%U\DQ�;X�#�&HUWL.�

EX\XQ�[X#FHUWLN�RUJ



Disclaimer  

CertiK reports are not, nor should be considered, an “endorsement” or “disapproval” of any 
particular project or team. These reports are not, nor should be considered, an indication of the 
economics or value of any “product” or “asset” created by any team or project that contracts 
CertiK to perform a security review.

CertiK Reports do not provide any warranty or guarantee regarding the absolute bug-free nature 
of the technology analyzed, nor do they provide any indication of the technologies proprietors, 
business, business model or legal compliance.

CertiK Reports should not be used in any way to make decisions around investment or 
involvement with any particular project. These reports in no way provide investment advice, nor 
should be leveraged as investment advice of any sort.

CertiK Reports represent an extensive auditing process intending to help our customers increase 
the quality of their code while reducing the high level of risk presented by cryptographic tokens 
and blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing risk. CertiK’s 
position is that each company and individual are responsible for their own due diligence and 
continuous security. CertiK’s goal is to help reduce the attack vectors and the high level of 
variance associated with utilizing new and consistently changing technologies, and in no way 
claims any guarantee of security or functionality of the technology we agree to analyze.

 

What is a CertiK report?  

A document describing in detail an in depth analysis of a particular piece(s) of source code 
provided to CertiK by a Client.

An organized collection of testing results, analysis and inferences made about the structure, 
implementation and overall best practices of a particular piece of source code.

Representation that a Client of CertiK has indeed completed a round of auditing with the 
intention to increase the quality of the company/product’s IT infrastructure and or source 
code.



Project Name Standard Hashrate Token

Description An ERC20 token implementation with an linear
release mechanism

Platform Ethereum; Solidity

Codebase GitHub Repository

Commit 1c767c5f5e2ab8fc9d6bef3649a2c43b150b7ad6

Delivery Date Jan 6th, 2021

Method of Audit Static Analysis, Manual Review

Consultants Engaged 2

Timeline Dec. 14, 2020 - Dec. 18, 2020

Total Issues 11

Total Critical 0

Total Major 0

Total Minor 1

Total Informational 10

 Overview  

Project Summary  

 

Audit Summary  

 

Vulnerability Summary  

 



Contract SHA-256 Checksum

BTCST.sol b933da93e42acfaf3c4a96975d08bc572058fb92943e1951cdfff3d1e4b25be0

ETHST.sol fd019661bd309e9d3be357b1297caca02533e21c990be04a02ee6e7df2487944

MockERC20.sol a88a83ac1d2492dc054d0d636b70746cb1c42142fc65166dddb69d345ce4dd26

StandardHashrateToken.sol 9545518a34857f0961cc7e6c443fe45d63aa7a07bc6d03c34328e9195a451e82

LinearReleaseToken.sol a36e544bcf8f8bf45166c0409ab8316259f2799861da9124799f61c0b96ccb94

OwnableContract.sol 8e49f05681eb4790dc28617183abb30780c70fb2c9b3bd6d169a8e8f5197b339

PeggyToken.sol 34b52647eb4e7dd11ed9057177c16e29f32facfd8cd6f2bddeb0b5ff409ae2fa

TokenUtility.sol 2f1a5b3b32c66ef18893707e42c7c8d29f3dd004bd02c00b34a4e1a5b7d4bee1

 Executive Summary  

This report has been prepared for Standard Hashrate Token Portocol to discover issues and 
vulnerabilities in the source code of their Smart Contract as well as any contract dependencies 
that were not part of an officially recognized library. A comprehensive examination has been 
performed, utilizing Dynamic Analysis, Static Analysis, and Manual Review techniques.

The auditing process pays special attention to the following considerations:

Testing the smart contracts against both common and uncommon attack vectors.
Assessing the codebase to ensure compliance with current best practices and industry 
standards.
Ensuring contract logic meets the specifications and intentions of the client.
Cross referencing contract structure and implementation against similar smart contracts 
produced by industry leaders.
Thorough line-by-line manual review of the entire codebase by industry experts.

 Documentation  

The sources of truth regarding the operation of the contracts in scope were lackluster and are 
something we advise to be enriched to aid in the legibility of the codebase as well as project. To 
help aid our understanding of each contract’s functionality we referred to in-line comments and 
naming conventions.

These were considered the specification, and when discrepancies arose with the actual code 
behaviour, we consulted with the Standard Hashrate Group or reported an issue.

File in Scope  



 System Overview  

The Standard Hashrate Token protocol creates an efficient market for Bitcoin’s mining power. By 
staking BTCSTs, holders of the tokens will receive daily Bitcoin distributions that correspond to the 
mining power staked.

AdminUpgradeabilityProxy, which is deployed on 
0x78650B139471520656b9E7aA7A5e9276814a38e9 on Binance Smart Chain, serves as the entry 
of the protocol and brings the upgradeability to allow administrator to improve the quality of the 
protocol by redirecting the transaction to the BTCST.sol, which is deployed on 
0xe28c4b5ca0d6cf41e5af4fca9a19b548bf3b0def.

BTCST.sol is the core implementation of the protocol following formal Upgradeable ERC20 
interface, which includes significant functions, such as mint, burn and transfer. All these 
significant functions can be invoked in delegate method through AdminUpgradeabilityProxy.

The advantage of taking delegate method in protocol is that administrator reserves the ability to 
improve the quality and fix the runtime issues of the project. It is also worthy of note the down 
side of delegate method, where the point to the core implementation in 
AdminUpgradeabilityProxy could be modified.

In order to improve the trustworthy of the project, any dynamic runtime changes on 
AdminUpgradeabilityProxy should be notified to clients. Any modified version of core 
implementation which is pointed by AdminUpgradeabilityProxy may be beyond the scope of 
this audit.

 Review Notes  

Certain optimization steps that we pinpointed in the source code  mostly referred to coding 
standards and inefficiencies, however 1 minor vulnerability was identified during our audit that 
solely concerns the specification. 

Certain discrepancies between the expected specification and the implementation of it were 
identified and were relayed to the team, however they pose no type of vulnerability and concern 
an optional code path that was unaccounted for.

 Recommendations  

Overall, the codebase of the contracts should be refactored to assimilate the findings of this 
report, enforce linters and / or coding styles as well as correct any spelling errors and mistakes 
that appear throughout the code to achieve a high standard of code quality and security.



ID Title Type Severity

Exhibit-
01

Unlocked Compiler Version
Declaration

Language Sepcific Informational

Exhibit-
02

Incorrect Naming Convention
Utilization

Coding Style Informational

Exhibit-
03

Proper Imports Dead Code Informational

Exhibit-
04

Too Many Digits Coding Style Informational

Exhibit-
05

Unused State Variables Dead Code Informational

Exhibit-
06

Divide before Multiply
Mathematical
Operations

Informational

Exhibit-
07

Missing Emit Events Optimization Minor

Exhibit-
08

Misleading Error Message Optimization Informational

Exhibit-
09

Missing Checks of Parameters Gas Consumption Informational

Exhibit-
10

Redundant Codes Dead Code Informational

Exhibit-
11

Use SafeMath
Mathematical
Operations

Informational

Type Severity Location

Language
Sepcific

Informational
StandardHashrateToken.sol, LinearReleaseToken.sol,
OwnableContract.sol, PeggyToken.sol, TokenUtility.sol,
MockERC20.sol, ETHST.sol, BTCST.sol

 Findings  

Exhibit-01: Unlocked Compiler Version Declaration  



Type Severity Location

Coding Style Informational OwnableContract.sol L38,L43 PeggyToken L16,L18,L19,L73

Description:  

The compiler version utilized throughout the project uses the “>=0.4.22 <0.8.0” specifier, denoting 
that a compiler version which is greater than the version 0.4.22 and smaller than 0.8.0 will be 
used to compile the contracts. Recommend the compiler version should be consistent throughout 
the codebase.

Recommendation:  

It is a general practice to instead lock the compiler at a specific version rather than allow a range 
of compiler versions to be utilized to avoid compiler-specific bugs and be able to identify ones 
more easily. We recommend locking the compiler at the lowest possible version that supports all 
the capabilities wished by the codebase. This will ensure that the project utilizes a compiler 
version that has been in use for the longest time and as such is less likely to contain yet-
undiscovered bugs.  

Alleviation:  

The team heeded our advice and locked the version of their contracts at version 0.6.9, ensuring
that compiler-related bugs can easily be narrowed down should they occur.
The recommendations were applied in commit fe4c51420106d67b63598d76165974cfd0745774.

 

 Exhibit-02: Incorrect Naming Convention Utilization   

Description:  

Solidity defines a naming convention that should be followed. In general, parameters should use 
mixedCase, refer to: https://solidity.readthedocs.io/en/v0.6.12/style-guide.html#naming-conventi
ons

Function arguments should use mixedCase.
Examples:
Parameters like: _devaddr

Constands should use UPPER_CASE_WITH_UNDERSCORES.
Examples:
Parameters like: _lockMagicNum  , _unLockMagicNum

Inside each contract, library or interface, use the following order:
Type declarations
State variables
Events
Functions



Type Severity Location

Dead Code Informational StandardHashrateToken.sol L4, PeggyToken.sol L4

refer to: https://docs.soliditylang.org/en/v0.6.12/style-guide.html?highlight=layout#order-of-layout

Examples:

Recommendation:  

The recommendations outlined here are intended to improve the readability, and thus they are 
not rules, but rather guidelines to try and help convey the most information through the names 
of things.

 

 Exhibit-03: Proper Imports   

Description:  

There are some imported files not used in the contract StandardHashrateToken .

There are some imported files not used in the contract PeggyToken .

There are some OpenZeppelin libraries are imported by copying to the project.
Better import libraries from github rather than copy it to directory.

    event Lock(address indexed account,uint256 amount);

    event UnLock(address indexed account,uint256 amount);

    uint internal constant  _lockMagicNum = 16;

    uint internal constant  _unLockMagicNum = 0;

    ...

import "@openzeppelin/contracts/token/ERC20/IERC20.sol";

import "@openzeppelin/contracts/math/SafeMath.sol";

import "@openzeppelin/contracts/token/ERC20/ERC20.sol";

import "@openzeppelin/contracts/access/Ownable.sol";

import "@openzeppelin/contracts/token/ERC20/IERC20.sol";

import "@openzeppelin/contracts/token/ERC20/SafeERC20.sol";

import "@openzeppelin/contracts/math/SafeMath.sol";

import "@openzeppelin/contracts/token/ERC20/ERC20.sol";



Type Severity Location

Coding Style Informational LinearReleaseToken.sol L211

Type Severity Location

Dead Code Informational OwnableContract.sol L125

Recommendation:  

We recommend to remove the unused imports, and import neccessary libraries from github.

Alleviation:  

This issue was addressed in commit 0817f4f1eb6fa27ad2549b8b44e5d816e5033986.

 

 Exhibit-04: Too Many Digits   

Description:  

Literals with many digits are difficult to read and review.

Recommendation:  

Consider to use Ether suffix.

 

 Exhibit-05: Unused State Variables and Functions   

Description:  

Unused state variable.

    require(nval < 864000000,"LockTimeUnitPerSeconds should less than 10000 

days");

    uint256 private constant TEN_THOUSAND_DAYS = 864*1e6;

    require(nval < TEN_THOUSAND_DAYS,"LockTimeUnitPerSeconds should less than 

10000 days");

    uint256[49] private __gap;



Type Severity Location

Mathematical
Operations

Informational
TokenUtility.sol L91 LinearReleaseToken.sol
L164,L276

Type Severity Location

Optimization Minor
OwnableContract.sol L87 PeggyToken.sol L53,L56,L73
LinearReleaseToken.sol L202,L206,L211

Recommendation:  

We recommend to remove unused state variables.

 

 Exhibit-06: Divide before Multiply   

Description:  

Solidity integer division might truncate. As a result, performing multiplication before division can 
sometimes avoid loss of precision.

Recommendation:  

We recommend ordering multiplication before division or multiply 1e18 on the division results, 
then divide 1e18 on the final results.

 

 Exhibit-07: Missing Emit Events   

    uint round = time.sub(_farmStartedTime).div(_miniStakePeriodInSeconds);

    uint end = _farmStartedTime.add(round.mul(_miniStakePeriodInSeconds));

    uint256 timePerRound = _lockTime.div(_lockRounds);

    ...

    uint passedRound = passed.div(timePerRound * _lockTimeUnitPerSeconds);

    freeAmount = records[keys[ii]].mul(

    (now - (keys[ii] - _lockTime * _lockTimeUnitPerSeconds))

    .div(_lockTime.div(_lockRounds) * 

_lockTimeUnitPerSeconds)).div(_lockRounds);



Type Severity Location

Optimization Informational PeggyToken.sol L74

Type Severity Location

Gas Optimization Informational PeggyToken.sol L60

Description:  

Several sensitive actions are defined without event declarations.

Examples:
transferOwnership()  in OwnableContract  contract.
changeIcon() , changeMeta() , dev()  in PeggyToken  contract.
changeLockTime() , changeLockRounds() , changeLockTimeUnitPerSeconds()  in 
LinearReleaseToken  contract.

Recommendation:  

Consider adding events for sensitive actions, and emit it in the function like below.

 

 Exhibit-08: Misleading Error Message   

Description:  

The error message below is misleading.

require(msg.sender == devaddr, "dev: wtf?");

Recommendation:  

We recommend changing it as follows
require(msg.sender == devaddr, "PeggyToken: Not devaddr");

 

 Exhibit-09: Missing Checks of Parameters   

    function transferOwnership(address newOwner) public onlyOwner {

        require(newOwner != address(0), "Ownable: new owner is the zero 

address");

        emit OwnershipTransferred(_owner, newOwner);

        pendingOwner = newOwner;

    }



Type Severity Location

Dead Code Informational PeggyToken.sol L65

Description:  

Better to check parameter value does not equals to zero in function burn() .
Better to check mapping _lockMap[account] does not equals to zero in function lockAccount() .
Better to check mapping _lockMap[account] is greater than zero in function unLockAccount() .

Recommendation:  

Consider to add checks for parameter values.

 

 Exhibit-10: Redundant Codes   

    function burn(uint value) override public onlyOwner {

        require (value != 0 , "Value equals to zero");

        super.burn(value);

    }

    function lockAccount(address account) public onlyOwner {

        require(_lockMap[account] != 0,"Account has been locked");

        uint256 bal = balanceOf(account);

        _totalSupplyLocked = _totalSupplyLocked.add(bal);

        _lockMap[account] = _lockMagicNum;

        emit Lock(account,bal);

    }

    function unLockAccount(address account) public onlyOwner {

        require(_lockMap[account] > 0,"Account is not locked;

        uint256 bal = balanceOf(account);

        _totalSupplyLocked = 

_totalSupplyLocked.sub(bal,"bal>_totalSupplyLocked");

        _lockMap[account] = _unLockMagicNum;

        emit UnLock(account,bal);

    }

}



Type Severity Location

Mathematical Operations Informational LinearReleaseToken.sol L111

Description:  

The below codes are reduntant:

This function can only return false.

Recommendation:  

We recommend removing the redundant codes.

 

 Exhibit-11: Use SafeMath   

Description:  

Below codes in function mintWithTimeLock  did not use SafeMath.

Recommendation:  

We recommend to use SafeMath for calculations.

    function finishMinting() public view onlyOwner returns (bool) {

        return false;

    }

    if (_lockTime>0){

        uint freeTime = now + _lockTime * _lockTimeUnitPerSeconds;

        _timeKeysPush(account, freeTime);

        ...

    }



Appendix  

Finding Categories  

 

Gas Optimization

Gas Optimization findings refer to exhibits that do not affect the functionality of the code but 
generate different, more optimal EVM opcodes resulting in a reduction on the total gas cost of a 
transaction.

Mathematical Operations

Mathematical Operation exhibits entail findings that relate to mishandling of math formulas, such 
as overflows, incorrect operations etc.

Logical Issue

Logical Issue findings are exhibits that detail a fault in the logic of the linked code, such as an 
incorrect notion on how block.timestamp  works.

Control Flow

Control Flow findings concern the access control imposed on functions, such as owner-only 
functions being invoke-able by anyone under certain circumstances.

Volatile Code

Volatile Code findings refer to segments of code that behave unexpectedly on certain edge cases 
that may result in a vulnerability.

Data Flow

Data Flow findings describe faults in the way data is handled at rest and in memory, such as the 
result of a struct  assignment operation affecting an in-memory struct  rather than an 
instorage one.

Language Specific

Language Specific findings are issues that would only arise within Solidity, i.e. incorrect usage of 
private  or delete  .

Coding Style

Coding Style findings usually do not affect the generated byte-code and comment on how to make 
the codebase more legible and as a result easily maintainable.

Inconsistency

Inconsistency findings refer to functions that should seemingly behave similarly yet contain 
different code, such as a constructor  assignment imposing different require  statements on 
the input variables than a setter function.



Magic Numbers

Magic Number findings refer to numeric literals that are expressed in the codebase in their raw 
format and should otherwise be specified as constant  contract variables aiding in their legibility 
and maintainability.

Compiler Error

Compiler Error findings refer to an error in the structure of the code that renders it impossible to 
compile using the specified version of the project.

Dead Code

Code that otherwise does not affect the functionality of the codebase and can be safely omitted.

 


