
Preliminary Comments
Security Assessment

March 4, 2021

Preliminary Report

For :
Standard Hashrate Token team @ Standard Hashrate Group

 Disclaimer

CertiK reports are not, nor should be considered, an “endorsement” or “disapproval” of any particular project or team.
These reports are not, nor should be considered, an indication of the economics or value of any “product” or “asset”
created by any team or project that contracts CertiK to perform a security review.

CertiK Reports do not provide any warranty or guarantee regarding the absolute bug-free nature of the technology
analyzed, nor do they provide any indication of the technologies proprietors, business, business model or legal
compliance.

CertiK Reports should not be used in any way to make decisions around investment or involvement with any particular
project. These reports in no way provide investment advice, nor should be leveraged as investment advice of any sort.

CertiK Reports represent an extensive auditing process intending to help our customers increase the quality of their code
while reducing the high level of risk presented by cryptographic tokens and blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing risk. CertiK’s position is that each
company and individual are responsible for their own due diligence and continuous security. CertiK’s goal is to help reduce
the attack vectors and the high level of variance associated with utilizing new and consistently changing technologies, and
in no way claims any guarantee of security or functionality of the technology we agree to analyze.

What is a CertiK report?

A document describing in detail an in depth analysis of a particular piece(s) of source code provided to CertiK by a
Client.
An organized collection of testing results, analysis and inferences made about the structure, implementation and
overall best practices of a particular piece of source code.
Representation that a Client of CertiK has indeed completed a round of auditing with the intention to increase the
quality of the company/product’s IT infrastructure and or source code.

Project Name Standard Hashrate Token

Description An ERC20 token implementation with an linear release
mechanism.

Platform Ethereum; Solidity

Codebase GitHub Repository

Commit 3478e6a86ca97f6ae8b267157fd8d92fc80ace11

Delivery Date March 4, 2021

Method of Audit Static Analysis, Manual Review

Consultants Engaged 2

Timeline Mar. 1, 2021 - Mar. 4, 2021

Total Issues 10

Total Critical 0

Total Major 0

Total Minor 1

Total Informational 8

Total Discussion 1

 Overview

Project Summary

Audit Summary

Vulnerability Summary

https://github.com/Standard-Hashrate-Group/SmartContracts
https://github.com/Standard-Hashrate-Group/SmartContracts
https://github.com/Standard-Hashrate-Group/SmartContracts/commit/3478e6a86ca97f6ae8b267157fd8d92fc80ace11

 Executive Summary

This report has been prepared for Standard Hashrate Token smart contract to discover issues and vulnerabilities in the
source code of their Smart Contract as well as any contract dependencies that were not part of an officially recognized
library. A comprehensive examination has been performed, utilizing Dynamic Analysis, Static Analysis, and Manual Review
techniques.

The auditing process pays special attention to the following considerations:

Testing the smart contracts against both common and uncommon attack vectors.
Assessing the codebase to ensure compliance with current best practices and industry standards.
Ensuring contract logic meets the specifications and intentions of the client.
Cross referencing contract structure and implementation against similar smart contracts produced by industry
leaders.
Thorough line-by-line manual review of the entire codebase by industry experts.

ID Contract SHA-256 Checksum

PT libraries/PeggyToken.sol cdeb49f26ffca5b9a19741c184fbf1f135c9a72b178d132ba5e69b84281b7a8d

TU libraries/TokenUtility.sol 481bd2cedec89030be731966ee0e74ecf387c1315968713548e308960cb4823c

BT token/BTCSTV2.sol 62ab66d74f32f9cab28f84aceb71ed8f75b3f846d1c4527a36c7e3404d7514b1

LR token/LinearReleaseTokenV2.sol 905f7d8f4713ae6f4ea018e36120e1f35847eaa1e277ace70e95a54fdea153de

SH token/StandardHashrateTokenV2.sol dd12c70f6862711453f1caa51d6ee255c698e4c1b32df7b58db752f8f43df131

 File in Scope

0%0%

9%

82%

9%

Findings

Critical
Major
Minor
Informational
Discussion

ID Title Type Severity

PT-01 Missing Emit Events Optimization Informational

PT-02 Missing Check Zero Address Optimization Informational

PT-03 Function State Mutability Optimization Informational

BT-01 Economy Model Logical Discussion

LR-01 Usage of _balanceFreeTimeKeysIndex Logical Minor

LR-02 Similar Functions Logical Informational

LR-03 Optimalization of If Condition Optimization Informational

LR-04 Missing Check Zero Value Logical Informational

SH-01 Usage of Local Variables Optimization Informational

SH-02 Initialization of _farmContract Optimization Informational

 Findings

Type Severity Location

Optimization Informational PeggyToken.sol, LinearReleaseTokenV2.sol, StandardHashrateTokenV2.sol

 PT-01: Missing Emit Events

Description:

Several sensitive actions are defined without event declarations.

Examples:
Functions changeIcon() , changeMeta() , and dev() in contract PeggyToken.sol .

Functions changeLockTime() , changeLockRounds() , and changeLockTimeUnitPerSeconds in contract
LinearReleaseTokenV2.sol .

Function changeFarmContract() in contract StandardHashrateTokenV2.sol .

Recommendation:

Consider adding events for sensitive actions, and emit it in the function like below:

 event Lock(address indexed devAddress);
 function dev(address _devaddr) public {

 emit Dev(_devaddr);
 }

https://github.com/Standard-Hashrate-Group/SmartContracts/blob/4f7b60ad51f25544b51fd5d846c6e948c145f4a8/contracts/libraries/PeggyToken.sol
https://github.com/Standard-Hashrate-Group/SmartContracts/blob/4f7b60ad51f25544b51fd5d846c6e948c145f4a8/contracts/token/LinearReleaseTokenV2.sol
https://github.com/Standard-Hashrate-Group/SmartContracts/blob/4f7b60ad51f25544b51fd5d846c6e948c145f4a8/contracts/token/StandardHashrateTokenV2.sol

Type Severity Location

Optimization Informational PeggyToken.sol, BTCSTV2.sol LinearReleaseTokenV2.sol,
StandardHashrateTokenV2.sol

 PT-02: Missing Check Zero Address

Description:

Functions lockAccount() and unLockAccount() in contract PeggyToken.sol are missing check zero address.

Function adminUpgradeDecimal in contract BTCSTV2.sol .

Functions allowanceLocked() , linearLockedBalanceOf , _linearLockedBalanceOf ,
getFreeToTransferAmount , transferLockedFrom , transferLockedTo , and approveLocked in contract
LinearReleaseTokenV2.sol are missing check zero address.

Functions transferLockedTo and transfer in contract StandardHashrateTokenV2.sol are missing check zero
address.

Recommendation:

Consider adding neccessary check, for example:

 function lockAccount(address account) public onlyOwner {
 require(account != address(0), "account is address(0)")
 ...
 }

https://github.com/Standard-Hashrate-Group/SmartContracts/blob/4f7b60ad51f25544b51fd5d846c6e948c145f4a8/contracts/libraries/PeggyToken.sol
https://github.com/Standard-Hashrate-Group/SmartContracts/blob/4f7b60ad51f25544b51fd5d846c6e948c145f4a8/contracts/token/BTCSTV2.sol
https://github.com/Standard-Hashrate-Group/SmartContracts/blob/4f7b60ad51f25544b51fd5d846c6e948c145f4a8/contracts/token/LinearReleaseTokenV2.sol
https://github.com/Standard-Hashrate-Group/SmartContracts/blob/4f7b60ad51f25544b51fd5d846c6e948c145f4a8/contracts/token/StandardHashrateTokenV2.sol

Type Severity Location

Optimization Informational PeggyToken.sol

PT-03: Function State Mutability

Description:

Function renounceOwnership() in contract PeggyToken.sol , does not change the state.

Recommendation:

Consider restricting the state mutability of the function to be view .

https://github.com/Standard-Hashrate-Group/SmartContracts/blob/4f7b60ad51f25544b51fd5d846c6e948c145f4a8/contracts/libraries/PeggyToken.sol

Type Severity Location

Logical Discussion BTCSTV2.sol

BT-01 : Economy Model

Description:

The contract BTCSTV2 will create a new token but has the same name BTCST with the before listed token. What's your
solution to make the new token compatible with the old BTCST token under the function adminUpgradeDecimal ?
What's your solution to migrate user data from the old token to new token?

https://github.com/Standard-Hashrate-Group/SmartContracts/blob/4f7b60ad51f25544b51fd5d846c6e948c145f4a8/contracts/token/BTCSTV2.sol

Type Severity Location

Logical Minor LinearReleaseTokenV2.sol

 LR-01: Usage of _balanceFreeTimeKeysIndex_balanceFreeTimeKeysIndex

Description:

The below statement is unnecessary and has a mistake:

 Value bytes32(timeKey) insteads of bytes32(lastvalue) should be the index of
_balanceFreeTimeKeysIndex[account][] , based its usage in the functions _timeKeysPush() and
_timeKeysRemove() .

Recommendation:

Consider removing this useless statement.

function _timeKeysRemove(address account,uint timeKey)internal returns(bool){
 ...
 _balanceFreeTimeKeysIndex[account][bytes32(lastvalue)] = toDeleteIndex+1;
 ...
}

https://github.com/Standard-Hashrate-Group/SmartContracts/blob/4f7b60ad51f25544b51fd5d846c6e948c145f4a8/contracts/token/LinearReleaseTokenV2.sol

Type Severity Location

Logical Informational LinearReleaseTokenV2.sol

LR-02: Useless Functions

Description:

There are two similar funtions, linearLockedBalanceOf() and _linearLockedBalanceOf() , in contract
LinearReleaseTokenV2.sol .

Function decreaseGasConsumptionByClearExpiredRecordst only returns a zero and is useless.

Recommendation:

Consider removing one of functions: linearLockedBalanceOf() and _linearLockedBalanceOf() .

Consider removing the function decreaseGasConsumptionByClearExpiredRecordst() .

https://github.com/Standard-Hashrate-Group/SmartContracts/blob/4f7b60ad51f25544b51fd5d846c6e948c145f4a8/contracts/token/LinearReleaseTokenV2.sol

Type Severity Location

Optimization Informational LinearReleaseTokenV2.sol

LR-03: Optimalization of If Condition

Description:

In the last if branch in the function getFreeToTransferAmount of contract LinearReleaseTokenV2.sol , once
allFreed equals lockedBalance . the last if condition will lead more opcodes to be executed since statement
lockedBalance.sub(allFreed,"allFreed>lockedBalance") returns zero.

Recommendation:

Consider changing the condition like below without any side effects:

 if (allFreed < lockedBalance){
 return balance.sub(lockedBalance.sub(allFreed,"allFreed>lockedBalance"),"balance
limited");
 }
 return balance;

https://github.com/Standard-Hashrate-Group/SmartContracts/blob/4f7b60ad51f25544b51fd5d846c6e948c145f4a8/contracts/token/LinearReleaseTokenV2.sol

Type Severity Location

Logical Informational LinearReleaseTokenV2.sol

LR-04: Missing Check Zero Value

Description:

Function changeLockTime and changeLockTimeUnitPerSeconds missing check zero value for parameter
nLockTime and nval respectively. Function calculateFreeAmount in contract will be reverted once nLockTime or
_lockTimeUnitPerSeconds is zero since they are factors of denominator in the function calculateFreeAmount .

Recommendation:

Consider checking zero value for the parameter nLockTime and _lockTimeUnitPerSeconds , like:

 function changeLockTime(uint256 nLockTime) public onlyOwner{
 require(nLockTime > 0,"nLockTime should greater than 0");
 _lockTime = nLockTime;
 }

https://github.com/Standard-Hashrate-Group/SmartContracts/blob/4f7b60ad51f25544b51fd5d846c6e948c145f4a8/contracts/token/LinearReleaseTokenV2.sol

Type Severity Location

Optimalization Informational StandardHashrateTokenV2.sol

SH-01: Usage of Local Variables

Description:

There are local variables are declared and only used once in the functions of contract StandardHashrateTokenV2.sol ,
like address owner in the function initialize() , address farm in the function onlyFarm .

Recommendation:

Consider removing those local variables, like:

 function initialize(string memory name, string memory symbol) public override
initializer{
 super.initialize(name,symbol,msg.sender,25*7,25);
 }

https://github.com/Standard-Hashrate-Group/SmartContracts/blob/4f7b60ad51f25544b51fd5d846c6e948c145f4a8/contracts/token/StandardHashrateTokenV2.sol

Type Severity Location

Optimalization Informational StandardHashrateTokenV2.sol

SH-02: Initialization of _farmContract_farmContract

Description:

Important contract _farmContract does not be initialized in function initialize .

Recommendation:

Consider initializing the value of _farmContract in function initialize() .

https://github.com/Standard-Hashrate-Group/SmartContracts/blob/4f7b60ad51f25544b51fd5d846c6e948c145f4a8/contracts/token/StandardHashrateTokenV2.sol

Appendix

Finding Categories

Gas Optimization

Gas Optimization findings refer to exhibits that do not affect the functionality of the code but generate different, more
optimal EVM opcodes resulting in a reduction on the total gas cost of a transaction.

Mathematical Operations

Mathematical Operation exhibits entail findings that relate to mishandling of math formulas, such as overflows, incorrect
operations etc.

Logical Issue

Logical Issue findings are exhibits that detail a fault in the logic of the linked code, such as an incorrect notion on how
block.timestamp works.

Control Flow

Control Flow findings concern the access control imposed on functions, such as owner-only functions being invoke-able
by anyone under certain circumstances.

Volatile Code

Volatile Code findings refer to segments of code that behave unexpectedly on certain edge cases that may result in a
vulnerability.

Data Flow

Data Flow findings describe faults in the way data is handled at rest and in memory, such as the result of a struct
assignment operation affecting an in-memory struct rather than an instorage one.

Language Specific

Language Specific findings are issues that would only arise within Solidity, i.e. incorrect usage of private or delete .

Coding Style

Coding Style findings usually do not affect the generated byte-code and comment on how to make the codebase more
legible and as a result easily maintainable.

Inconsistency

Inconsistency findings refer to functions that should seemingly behave similarly yet contain different code, such as a
constructor assignment imposing different require statements on the input variables than a setter function.

Magic Numbers

Magic Number findings refer to numeric literals that are expressed in the codebase in their raw format and should
otherwise be specified as constant contract variables aiding in their legibility and maintainability.

Compiler Error

Compiler Error findings refer to an error in the structure of the code that renders it impossible to compile using the
specified version of the project.

Dead Code

Code that otherwise does not affect the functionality of the codebase and can be safely omitted.

Icons explanation

 : Issue resolved

 : Issue not resolved / Acknowledged. The team will be fixing the issues in the own timeframe.

 : Issue partially resolved. Not all instances of an issue was resolved.

	 Disclaimer
	What is a CertiK report?

	 Overview
	Project Summary
	Audit Summary
	Vulnerability Summary

	 Executive Summary
	 File in Scope
	 Findings
	 PT-01: Missing Emit Events
	Description:
	Recommendation:

	 PT-02: Missing Check Zero Address
	Description:
	Recommendation:

	PT-03: Function State Mutability
	Description:
	Recommendation:

	BT-01 : Economy Model
	Description:

	 LR-01: Usage of _balanceFreeTimeKeysIndex
	Description:
	Recommendation:

	LR-02: Useless Functions
	Description:
	Recommendation:

	LR-03: Optimalization of If Condition
	Description:
	Recommendation:

	LR-04: Missing Check Zero Value
	Description:
	Recommendation:

	SH-01: Usage of Local Variables
	Description:
	Recommendation:

	SH-02: Initialization of _farmContract
	Description:
	Recommendation:

	Appendix
	Finding Categories
	Icons explanation

