
BTCST



1 / 8

0X202103010007

BTCST Audit Summary
BTCST Audit

Document information
Review

Audit results
Audited target file

Vulnerability analysis
Vulnerability distribution
Summary of audit results
Analysis of audit results

Re-Entrancy
Arithmetic Over/Under Flows
Unexpected Ether
Delegatecall
Default Visibilities
Entropy Illusion
External Contract Referencing
Unsolved TODO comments
Short Address/Parameter Attack
Unchecked CALL Return Values
Race Conditions / Front Running
Denial Of Service (DOS)
Block Timestamp Manipulation
Constructors with Care
Unintialised Storage Pointers
Floating Points and Numerical Precision
tx.origin Authentication



2 / 8

0X202103010007

Project name : BTCST Contract

Project address: None

Code URL : https://github.com/Standard-Hashrate-Group/SmartContracts/blob/main/contracts/token/BTCSTV2.sol

Latest commit : 3478e6a86ca97f6ae8b267157fd8d92fc80ace11

Projct target : BTCST Contract Audit

Test result : PASSED

Audit Info

Audit NO : 0X202103010007

Audit Team : Armors Labs

The BTCST team asked us to review and audit their BTCST contract. We looked at the code and now publish our

results.

Here is our assessment and recommendations, in order of importance.

Name Auditor Version Date

BTCST Audit Rock ,Hosea, Rushairer 1.0.0 2021-03-01

Note that as of the date of publishing, the above review reflects the current understanding of known security patterns

as they relate to the BTCST contract. The above should not be construed as investment advice.

Based on the widely recognized security status of the current underlying blockchain and smart contract, this audit

report is valid for 18 months from the date of output.

(Statement: Armors Labs reports only on facts that have occurred or existed before this report is issued and assumes

corresponding responsibilities. Armors Labs is not able to determine the security of its smart contracts and is not

responsible for any subsequent or existing facts after this report is issued. The security audit analysis and other

content of this report are only based on the documents and information provided by the information provider to

Armors Labs at the time of issuance of this report (" information provided " for short). Armors Labs postulates that the

information provided is not missing, tampered, deleted or hidden. If the information provided is missing, tampered,

BTCST Audit Summary

BTCST Audit

Document information

Review

Audit results

https://github.com/Standard-Hashrate-Group/SmartContracts/blob/main/contracts/token/BTCSTV2.sol


3 / 8

0X202103010007

deleted, hidden or reflected in a way that is not consistent with the actual situation, Armors Labs shall not be

responsible for the losses and adverse effects caused.)

file md5

BTCSTV2.sol e974dc9ac373675dac5ee6d7d4dfc012

vulnerability level number

Critical severity 0

High severity 0

Medium severity 0

Low severity 0

Vulnerability status

Re-Entrancy safe

Arithmetic Over/Under Flows safe

Unexpected Ether safe

Delegatecall safe

Default Visibilities safe

Entropy Illusion safe

External Contract Referencing safe

Short Address/Parameter Attack safe

Unchecked CALL Return Values safe

Race Conditions / Front Running safe

Denial Of Service (DOS) safe

Block Timestamp Manipulation safe

Constructors with Care safe

Unintialised Storage Pointers safe

Floating Points and Numerical Precision safe

tx.origin Authentication safe

Audited target file

Vulnerability analysis

Vulnerability distribution

Summary of audit results



4 / 8

0X202103010007

Description: 
One of the features of smart contracts is the ability to call and utilise code of other external contracts. Contracts

also typically handle ether, and as such often send ether to various external user addresses. The operation of

calling external contracts, or sending ether to an address, requires the contract to submit an external call. These

external calls can be hijacked by attackers whereby they force the contract to execute further code (i.e. through a

fallback function) , including calls back into itself. Thus the code execution "re-enters" the contract. Attacks of this

kind were used in the infamous DAO hack.

Detection results:

PASSED!

Security suggestion: 
no.

Description: 
The Virtual Machine (EVM) specifies fixed-size data types for integers. This means that an integer variable, only

has a certain range of numbers it can represent. A uint8 for example, can only store numbers in the range

[0,255]. Trying to store 256 into a uint8 will result in 0. If care is not taken, variables in Solidity can be exploited if

user input is unchecked and calculations are performed which result in numbers that lie outside the range of the

data type that stores them.

Detection results:

PASSED!

Security suggestion: 
no.

Description: 
Typically when ether is sent to a contract, it must execute either the fallback function, or another function

described in the contract. There are two exceptions to this, where ether can exist in a contract without having

executed any code. Contracts which rely on code execution for every ether sent to the contract can be

vulnerable to attacks where ether is forcibly sent to a contract.

Detection results:

PASSED!

Security suggestion: no.

Description: 
The CALL and DELEGATECALL opcodes are useful in allowing developers to modularise their code. Standard

Analysis of audit results

Re-Entrancy

Arithmetic Over/Under Flows

Unexpected Ether

Delegatecall



5 / 8

0X202103010007

external message calls to contracts are handled by the CALL opcode whereby code is run in the context of the

external contract/function. The DELEGATECALL opcode is identical to the standard message call, except that

the code executed at the targeted address is run in the context of the calling contract along with the fact that

msg.sender and msg.value remain unchanged. This feature enables the implementation of libraries whereby

developers can create reusable code for future contracts.

Detection results:

PASSED!

Security suggestion: no.

Description: 
Functions in Solidity have visibility specifiers which dictate how functions are allowed to be called. The visibility

determines whether a function can be called externally by users, by other derived contracts, only internally or

only externally. There are four visibility specifiers, which are described in detail in the Solidity Docs. Functions

default to public allowing users to call them externally. Incorrect use of visibility specifiers can lead to some

devestating vulernabilities in smart contracts as will be discussed in this section.

Detection results:

PASSED!

Security suggestion: 
no.

Description: 
All transactions on the blockchain are deterministic state transition operations. Meaning that every transaction

modifies the global state of the ecosystem and it does so in a calculable way with no uncertainty. This ultimately

means that inside the blockchain ecosystem there is no source of entropy or randomness. There is no rand()

function in Solidity. Achieving decentralised entropy (randomness) is a well established problem and many

ideas have been proposed to address this (see for example, RandDAO or using a chain of Hashes as described

by Vitalik in this post).

Detection results:

PASSED!

Security suggestion: 
no.

Description: 
One of the benefits of the global computer is the ability to re-use code and interact with contracts already

deployed on the network. As a result, a large number of contracts reference external contracts and in general

operation use external message calls to interact with these contracts. These external message calls can mask

malicious actors intentions in some non-obvious ways, which we will discuss.

Detection results:

Default Visibilities

Entropy Illusion

External Contract Referencing



6 / 8

0X202103010007

PASSED!

Security suggestion: 
no.

Description: 
Check for Unsolved TODO comments

Detection results:

PASSED!

Security suggestion: 
no.

Description: 
This attack is not specifically performed on Solidity contracts themselves but on third party applications that may

interact with them. I add this attack for completeness and to be aware of how parameters can be manipulated in

contracts.

Detection results:

PASSED!

Security suggestion: 
no.

Description: 
There a number of ways of performing external calls in solidity. Sending ether to external accounts is commonly

performed via the transfer() method. However, the send() function can also be used and, for more versatile

external calls, the CALL opcode can be directly employed in solidity. The call() and send() functions return a

boolean indicating if the call succeeded or failed. Thus these functions have a simple caveat, in that the

transaction that executes these functions will not revert if the external call (intialised by call() or send()) fails,

rather the call() or send() will simply return false. A common pitfall arises when the return value is not checked,

rather the developer expects a revert to occur.

Detection results:

PASSED!

Security suggestion: 
no.

Unsolved TODO comments

Short Address/Parameter Attack

Unchecked CALL Return Values

Race Conditions / Front Running



7 / 8

0X202103010007

Description: 
The combination of external calls to other contracts and the multi-user nature of the underlying blockchain gives

rise to a variety of potential Solidity pitfalls whereby users race code execution to obtain unexpected states. Re-

Entrancy is one example of such a race condition. In this section we will talk more generally about different kinds

of race conditions that can occur on the blockchain. There is a variety of good posts on this subject, a few are:

Wiki - Safety, DASP - Front-Running and the Consensus - Smart Contract Best Practices.

Detection results:

PASSED!

Security suggestion: 
no.

Description: 
This category is very broad, but fundamentally consists of attacks where users can leave the contract inoperable

for a small period of time, or in some cases, permanently. This can trap ether in these contracts forever, as was

the case with the Second Parity MultiSig hack

Detection results:

PASSED!

Security suggestion: 
no.

Description: 
Block timestamps have historically been used for a variety of applications, such as entropy for random numbers

(see the Entropy Illusion section for further details), locking funds for periods of time and various state-changing

conditional statements that are time-dependent. Miner's have the ability to adjust timestamps slightly which can

prove to be quite dangerous if block timestamps are used incorrectly in smart contracts.

Detection results:

PASSED!

Security suggestion: 
no.

Description: 
Constructors are special functions which often perform critical, privileged tasks when initialising contracts.

Before solidity v0.4.22 constructors were defined as functions that had the same name as the contract that

contained them. Thus, when a contract name gets changed in development, if the constructor name isn't

changed, it becomes a normal, callable function. As you can imagine, this can (and has) lead to some interesting

contract hacks.

Detection results:

PASSED!

Denial Of Service (DOS)

Block Timestamp Manipulation

Constructors with Care



8 / 8

0X202103010007

Security suggestion: 
no.

Description: 
The EVM stores data either as storage or as memory. Understanding exactly how this is done and the default

types for local variables of functions is highly recommended when developing contracts. This is because it is

possible to produce vulnerable contracts by inappropriately intialising variables.

Detection results:

PASSED!

Security suggestion: 
no.

Description: 
As of this writing (Solidity v0.4.24), fixed point or floating point numbers are not supported. This means that

floating point representations must be made with the integer types in Solidity. This can lead to

errors/vulnerabilities if not implemented correctly.

Detection results:

PASSED!

Security suggestion: 
no.

Description: 
Solidity has a global variable, tx.origin which traverses the entire call stack and returns the address of the

account that originally sent the call (or transaction). Using this variable for authentication in smart contracts

leaves the contract vulnerable to a phishing-like attack.

Detection results:

PASSED!

Security suggestion: 
no.

Unintialised Storage Pointers

Floating Points and Numerical Precision

tx.origin Authentication




